
CS152: Computer Systems Architecture
Memory System and Caches

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

Caches are important

“There are only two hard things in computer science:
1. Cache invalidation,
2. Naming things,
3. and off-by-one errors”

Original quote (with only the first two points) by Phil Karlton
I couldn’t find joke source

A modern computer has
a hierarchy of memory

CPU

Instruction
cache

Data
cache

Shared cache

DRAM

Low latency (~1 cycle)
Small (KBs)
Expensive ($1000s per GB)

High latency (100s~1000s of cycles)
Large (GBs)
Cheap (<$5 per GB)

Ideal memory:
As cheap and large as DRAM (Or disk!)
As fast as SRAM
…Working on it!

Cost prohibits having a lot of fast memory

What causes the
cost/performance difference? – SRAM

❑ SRAM (Static RAM) vs. DRAM (Dynamic RAM)

❑ SRAM is constructed entirely out of transistors
o Accessed in clock-synchronous way, just like any other digital component

o Subject to propagation delay, etc, which makes large SRAM blocks expensive
and/or slow

Source: Inductiveload, from commons.wikimedia.org

What causes the
cost/performance difference? – DRAM

❑ DRAM stores data using a capacitor
o Very small/dense cell

o A capacitor holds charge for a short while, but slowly
leaks electrons, losing data

o To prevent data loss, a controller must periodically read
all data and write it back (“Refresh”)
• Hence, “Dynamic” RAM

o Requires fab process separate from processor

❑ Reading data from a capacitor is high-latency
o EE topics involving sense amplifiers, which we won’t get

into

Source: Dailytech

Note: Old, “trench capacitor” design

What causes the
cost/performance difference? – DRAM
❑ DRAM is typically organized into a rectangle

(rows, columns)
o Reduces addressing logic, which is a high

overhead in such dense memory
o Whole row must be read whenever data in new

row is accessed
o As of 2020, typical row size ~8 KB

❑ Fast when accessing data in same row, order
of magnitude slower when accessing small
data across rows
o Accessed row temporarily stored in DRAM “row

buffer”

And the gap keeps growing

(and SRAM)

Goals of a memory system

❑ Performance at reasonable cost
o Capacity of DRAM, but performance of SRAM

❑ Simple abstraction
o CPU should be oblivious to type of memory

o Should not make software/compiler responsible for identifying memory
characteristics and optimizing for them, as it makes performance not portable
• Unfortunately this is not always possible, but the hardware does its best!

Introducing caches

❑ The CPU is (largely) unaware of the underlying memory hierarchy
o The memory abstraction is a single address space

o The memory hierarchy automatically stores data in fast or slow memory,
depending on usage patterns

❑ Multiple levels of “caches” act as interim memory between CPU and
main memory (typically DRAM)
o Processor accesses main memory through the cache hierarchy

o If requested address is already in the cache (address is “cached”, resulting in
“cache hit”), data operations can be fast

o If not, a “cache miss” occurs, and must be handled to return correct data to CPU

And the gap keeps growing

(and SRAM)
caches introduced
to intel x86
(80386, 80486)

Cache operation

❑ One of the most intensely researched fields in computer architecture

❑ Goal is to somehow make to-be-accessed data available in fastest
possible cache level at access time
o Method 1: Caching recently used addresses

• Works because software typically has “Temporal Locality” : If a location has been accessed
recently, it is likely to be accessed (reused) soon

o Method 2: Pre-fetching based on future pattern prediction
• Works because software typically has “Spatial Locality” : If a location has been accessed

recently, it is likely that nearby locations will be accessed soon

o Many, many more clever tricks and methods are deployed!

Average Memory Access Time = HitTime + MissRatio × MissPenalty

Basic cache operations

❑ Unit of caching: “Block” or “Cache line”
o May be multiple words -- 64 Bytes in modern Intel x86

❑ If accessed data is present in upper level
o Hit: access satisfied by upper level

❑ If accessed data is absent
o Miss: block copied from lower level

• Time taken: miss penalty

o Then accessed data supplied from upper level

How does the memory system keep track of what is present in cache?

Main memory

Cache

A simple solution: “Direct Mapped Cache”

❑ Cache location determined by address

❑ Each block in main memory mapped on one
location in cache memory (“Direct Mapped”)
o “Direct mapped”

❑ Cache is smaller than main memory, so many
DRAM locations map to one cache location

(Cache addressblock)
= (main memory addressblock) mod (cache sizeblock)

Since cache size is typically power of two,
Cache address is lower bits of block address

e.g.,

Selecting index bits

❑ Why do we chose low order bits for index?
o Allows consecutive memory locations to live in the cache simultaneously

o Reduces likelihood of replacing data that may be accessed again in the near future

o Helps take advantage of locality

Tags and Valid Bits

❑ How do we know which particular block is stored in a cache location?
o Store block address as well as the data, compare when read

o Actually, only need the high-order bits (Called the “tag”)

❑ What if there is no data in a location?
o Valid bit: 1 = present, 0 = not present

o Initially 0

Direct Mapped Cache Access

❑ For cache with 2W cache lines
o Index into cache with W address bits (the index bits)

o Read out valid bit, tag, and data

o If valid bit == 1 and tag matches upper address bits, cache hit!

Example 8-line direct-mapped cache:

Direct Mapped Cache Access Example

❑ 64-line direct-mapped cache -> 64 indices -> 6 index bits

❑ Example 1: Read memory 0x400C

❑ Example 2: Read memory 0x4008

0x400C = 0100 0000 0000 1100

Tag: 0x40 Index: 0x3

Byte offset: 0x0

-> Cache hit! Data read 0x42424242

0x4008 = 0100 0000 0000 1000

Tag: 0x40 Index: 0x2

Byte offset: 0x0-> Cache miss! Tag mismatch

Direct Mapped Cache Access Example

❑ 8-blocks, 1 word/block, direct mapped

❑ Initial state: All “valid” bits are set to invalid

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Direct Mapped Cache Access Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Cache miss! Main memory read to cache

Direct Mapped Cache Access Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Cache miss! Main memory read to cache

Direct Mapped Cache Access Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Cache hit! No main memory read

Direct Mapped Cache Access Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000
Cache misses result in main memory read

Direct Mapped Cache Access Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Cache collision results in eviction of old value

What if old value was written to?
Written data must be saved to main memory!

Write Policies

❑ Write Through: Write is applied to cache, and applied immediately to
memory
o + Simple to implement!

o - Wastes main memory bandwidth

❑ Write Back: Write is only applied to cache, write is applied only when
evicted
o Cache line has another metadata bit “Dirty” to remember if it has been written

o + Efficient main memory bandwidth

o - Complex

o More common in modern systems

Write Back Example: Cache Hit/Miss

❑ 64-line direct-mapped cache -> 64 indices -> 6 index bits

❑ Write 0x9 to 0x480C
o 0100 1000 0000 1100

❑ Write 0x1 to 0x490C
o 0100 1001 0000 1100

11

V D Tag Data

01

00Tag: 0x48 Index: 0x3

Byte offset: 0x0

Tag: 0x49 Index: 0x3

Byte offset: 0x0

00x4801

00

0

1

2

3

63

…

0x9

-> Cache hit!

-> Cache miss!
(Tag mismatch)

1

Cache line 3 must be written to main memory, and then apply write to cache

0x49 0x1

Larger block (cache line) sizes

❑ Take advantage of spatial locality: Store multiple words per data line
o Always fetch entire block (multiple words) from memory

o Another advantage: Reduces size of tag memory!

o Disadvantage: Fewer indices in the cache -> Higher miss rate!

Example: 4-block, 16-word direct-mapped cache

Cache miss with larger block

❑ 64 elements with block size == 4 words
o 16 cache lines, 4 index bits

❑ Write 0x9 to 0x483C
o 0100 1000 0011 1100

❑ Write 0x1 to 0x4938
o 0100 1001 0011 1000

11

V D Tag

01

00

0x4801

00

0

1

2

3

15

…

Data

Tag: 0x48 Index: 0x3

Block offset: 0x3

0x91

-> Cache hit!

Tag: 0x49 Index: 0x3

Block offset: 0x2

-> Cache miss!

Cache miss with larger block

❑ Write 0x1 to 0x4938
o 0100 1001 0011 1000

❑ Since D == 1,
o Write cache line 3 to memory

(All four words)

o Load cache line from memory
(All four words)

o Apply write to cache

11

V D Tag

01

00

0x4801

00

0

1

2

3

15

…

Data

0x91

Tag: 0x49 Index: 0x3

Block offset: 0x2

0 0x49 0x0 0x32 0x8 0x10x11

Writes/Reads four data elements just to write one!

Block size trade-offs

❑ Larger block sizes…
o Take advantage of spatial locality (also, DRAM is faster with larger blocks)

o Incur larger miss penalty since it takes longer to transfer the block from memory

o Can increase the average hit time and miss ratio

❑ AMAT = HitTime + MissPenalty*MissRatio

Looking back…

❑ Caches for high performance at low cost
o Exploits temporal locality in many programs

o Caches recently used data in fast, expensive memory

❑ Looked at “direct mapped” caches
o Cache slot to use was singularly determined by the address in main memory

o Uses tags and valid bits to correctly match data in cache and main memory

❑ Cache blocks (or “cache lines”) typically larger than a word
o Reduces tag size, better match with backing DRAM granularity

o Exploits spatial locality, up to a certain size (~64 bytes according to benchmarks)

Given a fixed space budget on the chip for cache memory, is this the most efficient way to manage it?

Direct-Mapped Cache Problem:
Conflict Misses

❑ Assuming a 1024-line direct-mapped
cache, 1-word cache line

❑ Consider steady state, after already
executing the code once
o What can be cached has been cached

❑ Conflict misses:
o Multiple accesses map to same index!

We have enough cache capacity, just inconvenient access patterns

Other extreme: “Fully associative” cache

❑ Any address can be in any location
o No cache index!

o Flexible (no conflict misses)

o Expensive: Must compare tags of all entries in parallel to find matching one

❑ Best use of cache space (all slots will be useful)

❑ But management circuit overhead is too large

Three types of misses

❑ Compulsory misses (aka cold start misses)
o First access to a block

❑ Capacity misses
o Due to finite cache size

o A replaced block is later accessed again

❑ Conflict misses (aka collision misses)
o Conflicts that happen even when we have space left

o Due to competition for entries in a set

o Would not occur in a fully associative cache of the same total size
Empty space can always be used in a fully associative cache
(e.g., 8 KiB data, 32 KiB cache, but still misses? Those are conflict misses)

Balanced solution:
N-way set-associative cache

❑ Use multiple direct-mapped caches in parallel to reduce conflict misses

❑ Nomenclature:
o # Rows = # Sets

o # Columns = # Ways

o Set size = #ways = “set associativity”
(e.g., 4-way -> 4 lines/set)

❑ Each address maps to only one set,
but can be in any way within the set

❑ Tags from all ways are checked
in parallel

Set-associative cache organization

Spectrum of associativity
(For eight total blocks)

V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data

V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data

One-way set-associative
(Direct-Mapped) Two-way set-associative Four-way set-associative

Eight-way set-associative (Fully associative)

Each “Data” is a cache line (~64 bytes), needs another mux layer to get actual word

Associativity example

❑ Compare caches with four elements
o Block access sequence: 0, 8, 0, 6, 8

❑ Direct mapped (Cache index = address mod 4)

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Time

Associativity example

❑ 2-way set associative (Cache index = address mod 2)

❑ Fully associative (No more cache index!)

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Time

Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Time

How Much Associativity?

❑ Increased associativity decreases miss rate
o But with diminishing returns

❑ Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
o 1-way: 10.3%

o 2-way: 8.6%

o 4-way: 8.3%

o 8-way: 8.1%

How much associativity,
how much size?

❑ Highly application-dependent!

Piscione Pietro and Villardita Alessio, “Coherence and consistency models in multiprocessor architecture,” University of Pisa Computer Architecture, 2015

For integer portion of SPEC CPU2000

Capacity misses

Conflict misses

Compulsory misses

Associativity implies choices

Direct-mapped N-way set-associative

Only one place an address can go
In case of conflict miss, old data is simply evicted

Multiple places an address can go
In case of conflict miss, which way should we evict?

What is our “replacement policy”?

Replacement policies

❑ Optimal policy (Oracle policy):
o Evict the line accessed furthest in the future

o Impossible: Requires knowledge of the future!

❑ Idea: Predict the future from looking at the past
o If a line has not been used recently, it’s often less likely to be accessed in the near

future (temporal locality argument)

❑ Least Recently Used (LRU): Replace the line that was accessed furthest in
the past
o Works well in practice

o Needs to keep track of ordering, and discover oldest line quickly

Pure LRU requires complex logic: Typically implements cheap approximations of LRU

Other replacement policies

❑ LRU becomes very bad if working set becomes larger than cache size
o “for (i = 0 to 1025) A[i];”, if cache is 1024 elements large, every access is miss

❑ Some alternatives exist
o Effective in limited situations, but typically not as good as LRU on average

o Most recently used (MRU), First-In-First-Out (FIFO), random, etc …

o Sometimes used together with LRU

Performance improvements with caches

❑ Given CPU of CPI = 1, clock rate = 4GHz
o Main memory access time = 100ns

o Miss penalty = 100ns/0.25ns = 400 cycles

o CPI without cache = 400

❑ Given first-level cache with no latency, miss rate of 2%
o Effective CPI = 1 + 0.02 × 400 = 9

❑ Adding another cache (L2) with 5ns access time, miss rate of 0.5%
o Miss penalty = 5ns/0.25ns = 20 cycles

o New CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
Base L1 L2

CPI Improvements 400 9 3.4

IPC improvements 0.0025 0.11 0.29

Normalized performance 1 44 118

Real-world: Intel Haswell i7

❑ Four layers of caches (two per-core layers, two shared layers)
o Larger caches have higher latency

o Want to achieve both speed and hit rate!

❑ The layers
o L1 Instruction & L1 Data:

32 KiB, 8-way set associative

o L2: 256 KiB, 8-way set associative

o L3: 6 MiB, 12-way set associative

o L4: 128 MiB, 16-way set associative
eDRAM!

CPU

Instruction
cache

Data
cache

L2 cache

L3 cache

L4 cache

CoreCoreCore Core

Real-world: Intel Haswell i7

❑ Cache access latencies
o L1: 4 - 5 cycles

o L2: 12 cycles

o L3: ~30 - ~50 cycles

❑ For reference, Haswell as 14 pipeline stages

So far…

❑ What are caches and why we need them

❑ Direct-mapped cache
o Write policies

o Larger block size and implications

o Conflict and other misses

❑ Set-associative cache
o Replacement policies

Cache-aware software example:
Matrix-matrix multiply

❑ Multiplying two NxN matrices (C = A × B)

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * B[k][j]

…

…
×

A B

=

C

2048*2048 on a i5-7400 @ 3 GHz = 63.19 seconds

is this fast?

Whole calculation requires 2K * 2K * 2K = 8 Billion floating-point mult + add
At 3 GHz, ~5 seconds just for the math. Over 1000% overhead!

Assuming IPC=1, true numbers complicated due to superscalar

Overheads in matrix multiplication (1)

❑ Column-major access makes inefficient use of cache lines
o A 64 Byte block is read for each element loaded from B

o 64 bytes read from memory for each 4 useful bytes

❑ Shouldn’t caching fix this? Unused bits should be useful soon!
o 64 bytes x 2048 = 128 KB … Already overflows L1 cache (~32 KB)

…

×

A B

=

C

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * B[k][j]

…

Overheads in matrix multiplication (1)

❑ One solution: Transpose B to match cache line orientation
o Does transpose add overhead? Not very much as it only scans B once

❑ Drastic improvements!
o Before: 63.19s

o After: 10.39s … 6x improvement!

o But still not quite ~5s

…

×

A BT

=

C

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * Bt[j][k]

` ……

Overheads in matrix multiplication (2)

❑ Both A and B read N times
o A re-uses each row before moving on to next

o B scans the whole matrix for each row of A

o One row: 2048 * 4 bytes = 8192 bytes

o One matrix: 2048 * 2048 * 4 bytes = 16 MB

o No caching effect for B!

…

×

A BT

=

C

for (i = 0 to N)
for (j = 0 to N)

for (k = 0 to N)
C[i][j] += A[i][k] * Bt[j][k]

…

fits in L1 cache (32 KB)

exceeds in L3 cache (6 MB shared across 4 cores)

Overheads in matrix multiplication (2)

❑ One solution: “Blocked” access
o Assuming BxB fits in cache,

o B is read only N/B times from memory

❑ Performance improvement!
o No optimizations: 63.19s

o After transpose: 10.39s

o After transpose + blocking: 7.35

×

A BT

=

C

A1 B1 B2 B3 … C1

C1 sub-matrix = A1×B1 + A1×B2 + A1×B3 … A2×B1 …

for (i = 0 to N/B)
for (j = 0 to N/B)

for (k = 0 to N/B)
for (ii = 0 to B)

for (jj = 0 to B)
for (kk = 0 to B)

C[i*B+ii][j*B+jj] += A[i*B+ii][k*B+kk] * Bt[j*B+jj][k*B+kk]

…

Aside: Cache oblivious algorithms

❑ For sub-block size B × B -> N * N * (N/B) reads. What B do we use?
o Optimized for L1? (32 KiB for me, who knows for who else?)

o If B*B exceeds cache, sharp drop in performance

o If B*B is too small, gradual loss of performance

❑ Do we ignore the rest of the cache hierarchy?
o Say B optimized for L3,

B × B multiplication is further divided into T×T blocks for L2 cache

o T × T multiplication is further divided into U×U blocks for L1 cache

o … If we don’t, we lose performance

❑ Class of “cache-oblivious algorithms”
Typically recursive definition of data structures… topic for another day

Aside: Recursive Matrix Multiplication

C11

=

C

C12

C21 C22

A11

×

A

A12

A21 A22

B11

B

B12

B21 B22

=
A11B11

A21B11

A11B12

A21B12

+
A12B21

A22B21

A12B22

A22B22

8 multiply-adds of (n/2) × (n/2) matrices
Recurse down until very small

